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1 Introduction

The frequency of words and other linguistic units plays a central role in
all branches of corpus linguistics. Indeed, the use of frequency information
is what distinguishes corpus-based methodologies from other approaches to
language. Thus, not surprisingly, the distribution of frequencies of words and
combinations of words in corpora has played a central role in the debate be-
tween proponents and detractors of the corpus-based approach (see, e.g., Ab-
ney 1996). One would then expect that the study of word frequency distribu-
tions plays a central role in the corpus linguistics curriculum. This is not the
case. The standard introductions to the field (e.g., Biber/Conrad/Reppen
1998; McEnery/Wilson 2001) do not discuss the topic at all, and even an
introduction explicitly geared towards the statistical aspects of the disci-
pline, such as Oakes (1998), mentions Zipf’s law (see section 3 below) only
in passing (pp. 54-55).

This state of affairs may be due to the fact that the study of word
frequency distributions originated outside mainstream linguistics. George
Kingsley Zipf, undoubtedly the father of lexical statistics (the study of word
frequency distributions), was trained as a philologist and considered himself
a “human ecologist”. Other important pioneers of the field were the psychol-
ogist George Miller, the mathematician Benoit Mandelbrot (of Mandelbrot
set fame) and the Nobel Prize winning economist Herbert Simon. Thus, the
argumentations and terminology found in the early literature often sound
rather exotic to linguists (e.g., Mandelbrot’s “temperature of discourse” ap-
proach). Still today, most articles about lexical statistics appear in relatively
obscure journals and they are often rooted in traditions, in particular that
of the former Soviet Union, that are not well known in the English-centered
world of corpus linguistics (Sampson 2002). The heavy involvement of non-
linguists in the study of lexical statistics continues to this day. Judging
from the affiliations of the authors of the recent Glottometrics volumes in
honor of Zipf, word frequency distributions are more of interest to theoretical
physicists than to theoretical linguists. The relatively recent publication of
Baayen (2001), a thorough introduction to lexical statistics that summarizes



much of the earlier work, but recasts problems and solutions in the perspec-
tive of modern corpus/computational linguistics, will probably contribute
to give more prominence to the domain.

This article introduces some of the empirical phenomena pertaining to
word frequency distributions and the classic models that have been proposed
to capture them. In particular, section 2 introduces the basic analytical tools
and discusses the patterns typically encountered in corpora/texts. Section 3
presents Zipf-Mandelbrot’s law, the most famous model proposed to account
for frequency distributions. Section 4 shortly reviews some of the practical
consequences and applications of frequency distribution modeling. Section
5 concludes by suggesting some directions for further study.

2 Distributions

2.1 Counting tokens and types

In order to study word frequency distribution, we must first of all count all
the instances (tokens) of all distinct words (types) that occur in the corpus
of interest (I use the term corpus in the most general way, to refer to any
text or collection of texts that is the object of a linguistic study). Neither
deciding what must be counted as a token, nor mapping tokens to types are
trivial tasks. Consider the following mini-corpus:

The woman went to Long Beach and to Anaheim on bus number
234. However, the man didn’t go.

First, we will have to decide whether punctuation marks are tokens or not
and whether to keep or remove strings containing digits. Both choices affect
the shape of frequency distributions (punctuation marks are few and very
frequent, numbers are many and rare). Next, we face a number of token
segmentation problems. For example, we must decide whether we should
split didn’t into two words (and if we do, where do we split it). Moreover,
Long Beach should perhaps be counted as a single word. Again, these choices
will affect our counts in a systematic way. Having decided which strings to
ignore, and how to segment the remaining text, we can count the tokens in
the corpus. For example, if we decide to ignore punctuation and numbers,
to treat Long Beach as two words and didn’t as a single word, the mini-
corpus above will have 17 tokens: The, woman, went, to, Long, Beach, and,
to, Anaheim, on, bus, number, However, the, man, didn’t, go.

Now, we must map each word token to a word type. In order to do
this, we have to decide whether our counts should be sensitive to the dis-
tinction between upper and lower case or not: intuitively, The and the in
the mini-corpus above should be counted as instances of the same word, but
it would be wrong to treat the parts of the name Long Beach as instances



of the adjective long and noun beach, respectively. In English, ignoring
the distinction between upper and lower case will have distorting effects on
proper name counts, but by preserving case distinctions we will duplicate
word types that occur both in sentence-initial position and elsewhere. If
we distinguish between upper and lower case, the mini-corpus tokenized as
above will contain 16 types, one of them (to) represented by two tokens.

If we have the relevant resources (most importantly, a list of word-
form/lemma correspondences), we can map tokens to lemma types. In the
mini-corpus above, went and go would be treated as tokens of the same
lemma type. On the one hand, more sophisticated tokenization/type map-
ping steps are likely to lead to cleaner counts. On the other, the errors and
imprecisions inherent in any form of automated pre-processing can have a
serious distorting effect on the data. For example, if all the words that are
not recognized by our lemmatizer are mapped to a type unknown, we will
transform many low frequency items into a single artificial high frequency
type.

In the corpora analyzed in this article, unless stated otherwise, punc-
tuation marks, strings containing digits and strings made entirely of non-
alphabetic characters are not counted as tokens; all other white-space or
punctuation-delimited strings constitute separate tokens (in English, some
special strings are split into multiple tokens — e.g., wouldn’t is tokenized as
would, n’t); upper- and lower-case types and not merged; lemmatization is
not performed. The token and type counts I report are based on this to-
kenization/type mapping scheme. Issues related to corpus pre-processing,
tokenization and lemmatization are discussed in Articles 25 and 26 of this
handbook.

2.2 The basic tools of lexical statistics

Once we have tokenized a corpus and mapped each token to a type, we
can count the number of tokens in the corpus, or corpus size (N), and the
number of types, or vocabulary size (V). For example, in the mini-corpus
above, given the tokenization and type mapping rules I adopted, N is 14
and V is 13.

The starting point for any further analysis will be a frequency list, i.e., a
list that reports the number of instances (tokens) of each word (type) that
we encountered in the corpus. Consider for example the toy frequency list
in table 1.

The data in a frequency list can be re-organized in two ways that are
particularly useful to study word frequency distributions: as rank/frequency
profiles and as frequency spectra. To obtain a rank/frequency profile, we
simply replace the types in the frequency list with their frequency-based
ranks, by assigning rank 1 to the most frequent type, rank 2 to the second
most frequent word, etc. In the example of table 1, barks would be assigned



type f | type | f
again 2 he 1
and 3 her 1
another | 1 that | 2
bark 1 this 1
barks 6 will 1
dog 3 with | 1
friends 1

Table 1: A toy frequency list

rank 1, and and dog would be assigned rank 2 and 3 (ranking of words with
the same frequency is arbitrary), etc. This produces the rank/frequency
profile in table 2.

r f r f
1|6 8 1
2|3 9 1
313 10 | 1
4|2 11 |1
5| 2 12 | 1
6|1 13 | 1
711

Table 2: A toy rank/frequency profile

A frequency spectrum is a list reporting how many types in a frequency
list have a certain frequency. The spectrum corresponding to the frequency
information in table 1 is presented in table 3.
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N
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Table 3: A toy frequency spectrum

The first row of table 3 tells us that there are 8 words with frequency 1
(V(1) = 8; another, bark, friends, he, her, this, will, with). The second row
tells us that there are 2 words with frequency 2 (V(2) = 2; again, that), etc.

A rank/frequency profile and the corresponding frequency spectrum con-
tain the same information, and it is thus possible to derive one from the
other. However, as we will see, rank/frequency profiles are particularly use-
ful to study the properties of high frequency items and frequency spectra
are useful to study the properties of low frequency items.



2.3 Typical frequency patterns

Table 4 shows the top and bottom ranks and corresponding frequencies in
the Brown corpus of American English (see Appendix).

top frequencies bottom frequencies
rank fq | word || rank range fq | randomly selected examples
1 62642 | the 7967-8522 10 | recordings undergone privileges
2 35971 | of 8523-9236 9 | Leonard indulge creativity
3 27831 | and 9237-10042 8 | unnatural Lolotte authenticity
4 25608 | to 10043-11185 7 | diffraction Augusta postpone
5 21883 | a 11186-12510 6 | uniformly throttle agglutinin
6 19474 | in 12511-14369 5 | Bud Councilman immoral
7 10292 | that 14370-16938 4 | verification gleamed groin
8 10026 | is 16939-21076 3 | Princes nonspecifically Arger
9 9887 | was 21077-28701 2 | blitz pertinence arson
10 8811 | for 28702-53076 1 | Salaries Evensen parentheses

Table 4: Top and bottom of the Brown frequency list

The top ranks are occupied by function words such as the, of and and.
Frequency decreases quite rapidly: the most frequent word is almost twice
as frequent as the second most frequent word. The difference in frequency
becomes less dramatic as we go down the list, but the ranks are still spread
across a wide frequency range. Because of their very high frequencies, the
10 top-ranked word types alone account for about 23% of the total token
count in the Brown (232,425 occurrences over 996,883 tokens in total). This
is to say that in the Brown more than one word in five comes from the set
the, of, and, to, a, in, that, is, was, for.

The picture is very different at the bottom of the list, where there are
massive frequency ties, and more ties as the frequency decreases: for exam-
ple, there are 4,137 words with frequency 3 (ranks from 16939 to 21076),
7,624 words with frequency 2 (ranks from 21077 to 28701), 24,374 words
with frequency 1 (ranks from 28702 to 53076). Since the Brown corpus
contains 53,076 distinct types in total, the words occurring once constitute
almost half of its vocabulary. The words occurring 3 times or less constitute
almost 70% of the vocabulary. At the same time, this 70% of types account
for only about 5% of the overall Brown token count (52,033 tokens over
996,883 total tokens). The lowest frequency elements are of course content
words. As the random examples reported in the table show, not all the
lowest frequency words are neologisms, new derivations or exotic forms. For
example, words such as pertinence and parentheses are probably not going
to strike the average English speaker as new or unusual.

The dichotomy between the extremely high token frequency of the most
frequent types and the large number of low frequency types affects the classic
summary statistics in peculiar ways. The average frequency of word types
in the Brown is of 19 tokens. However, this value is inflated by the very
high frequencies of the most common words: more than 90% of the types in



the Brown corpus have frequency lower than the average. The median value
is 2 (i.e., 50% types have frequency greater than or equal to 2, and 50%
types have frequency less than or equal to 2). The mode (the most common
value), of course, is 1.
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Figure 1: Rank/frequency profile and frequency spectrum of the Brown
corpus.

The upper panel of figure 1 illustrates the rank/frequency profile of the
Brown corpus. Frequency (on the y axis) is plotted on a logarithmic scale,
because the frequency of the most frequent words is so much higher than the
frequency of the long tail of rare words that a figure of this size without a
logarithmic transformation would look like the letter L. The plot illustrates
very clearly what we already observed: the frequency curve decreases very
steeply from the extremely high values corresponding to the most frequent
words, and it becomes progressively flatter, until it reaches a very wide
plateau in correspondence to the ranks assigned to the tail of words occurring
once (increasingly narrower plateaus corresponding to words occurring 2, 3,
4 times etc. are also visible). The lower panel of figure 1 plots the frequency
spectrum of the Brown (again, token frequency — this time on the z axis
— is on a logarithmic scale). The lowest frequency classes are represented
by a very large (and rapidly decreasing) number of types (the types that
occur once, the types that occur twice, etc.), and there is a long tail of high
frequency classes represented by only 1 or 0 types.

The frequency distribution of the Brown is not specific to this corpus,
but typical of natural language texts, independently of tokenization/type



mapping method, size, language, textual typology, etc. To illustrate this, let
us consider the British National Corpus (BNC —see Appendix), which differs
from the Brown in that it represents British rather than American English,
it is based on more recent texts, it includes a spoken language section and,
perhaps most importantly, it is much larger. The Brown contains about one
million tokens, whereas the written section of the BNC contains 86,480,906
tokens, and the spoken section contains 10,423,654 tokens.
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Figure 2: Rank/frequency profiles of the written (top left) and spoken (top
right) sections of the BNC, of the written BNC with minimal pre-processing
(bottom left) and of the lemmatized written BNC (bottom right).

Figures 2 and 3 present rank/frequency profiles and frequency spectra
for the BNC. The top two panels of figure 2 show the rank/frequency profiles
of the BNC written and spoken sections, respectively. The top two panels
of figure 3 show the corresponding spectra. The overall pattern is very
similar to the one we observed in the Brown: few very frequent words,
many low frequency words. This second fact is perhaps surprising: one
could reasonably expect that in a very large sample of a language the words
that are encountered only once become a minority. This is obviously not
the case: in the written section of the BNC, the words occurring only once
account for 46% of all the types, and the proportion of words occurring 3
times or less is of 66%. In the spoken section, these proportions are smaller
(perhaps suggesting less lexical variety in speech?) but still very significant:
35% of the types occur only once and 56% occur 3 times or less. The mean
token frequency of types in the written BNC is of about 146 tokens but



Wi )

wimy
Oe+00  1e+05  2e+05  3e+05  de+05

150000 250000

0 50000

BHC Written

o

o

L.

o

T
1e+00

T
1e+02 fe+0d

m
BHC Written Raw

T
1e+08

o

o

k-

T
1e+00

T T
1e+02 Te+04

m

T
1e+06

Wim)

Wim3

15000 25000

o 5000

10000 15000

S000

o

BHC Spoken

1S —

T T
1 100 10000

m
BHC Written Lemmatized

o

4 o
o

C

T T T T
1e+00 1e+02 1e+04 1e+06

m

Figure 3: Frequency spectra of the written (top left) and spoken (top right)
sections of the BNC, of the written BNC with minimal pre-processing (bot-
tom left) and of the lemmatized written BNC (bottom right).

more than 95% of the types have a frequency below this value. Like in the
Brown, the median is 2 and the mode is 1. Corpus after corpus, we find
that the mean is a value much higher than the median (and, as is intuitive,
it increases in function of corpus size), the median is 2 or 1 and the mode
is 1. Thus, the mean is not a meaningful indicator of central tendency,
whereas the median and the mode are not very interesting since they tend
to have the same values in all corpora. The third panels of figures 2 and 3
show the rank/frequency profile and frequency spectrum in a version of the
written BNC in which strings containing digits and other non-alphabetic
symbols were counted as regular words. Again, we encounter a very similar
pattern. Not surprisingly, the portion of the distribution taken by words
occurring only once is even more prominent. The bottom right panels of
figures 2 and 3 report the rank/frequency profile and frequency spectrum of
the lemmas in the written BNC. Although the number of very low frequency
forms is lower than in the non-lemmatized counterpart (top left panels),
the overall pattern is essentially the same, which shows that such pattern
cannot be simply explained in terms of the presence of inflected forms in
non-lemmatized corpora.

Figures 4 and 5 display rank/frequency profiles and frequency spectra for
four more texts/corpora of very different kinds. The top left panels present
data from The War of the Worlds, the famous H. G. Wells novel from 1898,



The War of the Worlds Italian Hewspaper
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Figure 4: Rank/frequency profiles of The War of the Worlds (top left), the
Italian la Repubblica corpus (top right), a section of the German FEuroParl
corpus (bottom left) and a corpus of Japanese web-pages (bottom right).

The War of the Words Italian Hewspaper
o I o
(=}
7 J
2 | &
o -
o
u
7
£ B g%
o 5 4
g
= o i
S i
= . 1.
- 2 i
L= | oo + - []
T T T T T & T T T
1 5 =) s00 S000 Te+00  1e+02  le+04  1e+06
m m
German EP o Japanese Weh
g Ie S =
= H
=) o
2 2
= z
-~ o - o
== ==
£ 5 £ 8
= =] = g
= =
=) o =
= s °
—_ a o
=] =]
(=0 i oo =T %_nmo
T T T T T T
1 100 10000 1 100 10000
m m

Figure 5: Frequency spectra of The War of the Worlds (top left), the Italian
la Repubblica corpus (top right), a section of the German EuroParl corpus
(bottom left) and a corpus of Japanese web-pages (bottom right).



which, unlike the Brown or the BNC, is a “corpus” made of a single, coherent
text. Moreover, compared to the other corpora analyzed here, it is very
small, being comprised of 60,160 tokens. The top right panels present data
from the la Repubblica corpus, containing (at the time in which the data
used here were extracted) 325,290,035 tokens of Italian newspaper text (see
Appendix). The bottom left panels present data from the year-2002 section
of the German EuroParl corpus (see Appendix), collecting transcriptions of
FEuropean Parliament proceedings. This corpus contains 3,090,142 tokens.
Finally, the bottom right panels present data from a corpus of Japanese web
pages collected in 2004 with the method described in Ueyama/Baroni (2006)
and tokenized with the ChaSen system (Matsumoto/Kitauchi/Yamashita/et
al. 2000). It contains 2,175,736 tokens. Despite the obvious differences
among these corpora, the rank/frequency profiles and the frequency spectra
reveal strikingly similar overall patterns, in turn resembling those that we
encountered in the Brown and BNC: few very high frequency types, and
long tails of very rare words.

The same skewed shape also emerges if instead of looking at words we
look at sequences of words, or ngrams, such as bigrams or trigrams (se-
quences of two and three words, respectively) . Such distributions are even
more skewed than those of words (given that the potential vocabulary of
possible ngrams is much higher). This is illustrated for the Brown corpus in
figure 6. Among the trigrams, the types with frequency 1 constitute 92% of
the vocabulary!
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The distribution of word and ngram frequencies is rather different from
the typical count distributions that are studied in introductory statistics
classes. For example, if we divide the male students of a certain high-school
into classes based on their height, we expect that most students will fall
into the medium class, fewer students will be classified as tall or short, and
very few students will turn out to be extremely tall or extremely short. The
distribution of words is akin to finding a population made of few giants,
rather few people in the medium height range and an army of dwarves.

3 Zipf(-Mandelbrot)’s law

The typical skewed structure of word frequency distributions was first sys-
tematically studied by Zipf (1949, 1965), who observed in various data-sets
that frequency is a non-linearly decreasing function of rank (decreasing more
sharply among high ranks than among low ranks), and proposed the follow-
ing model, which became known as Zipf’s law, to predict the frequency of a
word given its rank:

(1)

In this formula, f(w) and r(w) stand for frequency and rank of word w,
respectively. C and a are constants to be determined on the basis of the
available data. To understand why this is a plausible model, assume for now
that a = 1 (but the same point could be illustrated with other values of this
parameter), so that equation (1) can be simplified to f(w) = T(Zu) Then,
the most frequent word in the corpus, having rank 1, must have frequency
C'. Suppose that in a certain corpus we find that the most frequent word has
frequency 60,000 and thus we set C = 60,000. The second most frequent
word is predicted to have frequency C/2 = 30,000, half the frequency of the
first word. The third most frequent word will have frequency C/3 = 20,000,
one third of the first word. On the other hand, the 100th most frequent
word (the word with rank 100) will have frequency C'/100 = 600. The 101st
most frequent word will have frequency C'/101 = 594.06, i.e. about 99% of
the frequency of the 100th word. The 102nd most frequent word will have
frequency C'/102 = 588.23, about 98% of the frequency of the 100th word.
Thus, the model predicts a very rapid decrease in frequency among the
most frequent words, which becomes slower as the rank grows, leaving very
long tails of words with similar low frequencies. Zipf’s law does not predict
frequency ties, since there are no ties among ranks, but it approximates the
empirically attested plateaus by predicting a very large number of words
with very similar non-integer frequencies. For example, the model above
with a set to 1 and C set to 60,000 predicts that about 80,000 words will
have frequencies between 1.5 and 0.5!
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Zipf’s law is an inverse power function, i.e., frequency is proportional to a
negative power (—a) of rank. That frequency decreases when rank increases
is obvious, given that ranks are based on frequency. However, compared to
other distributions commonly used to model decay in natural and artificial
phenomena, such as the exponential distribution, a power law distribution
decreases more slowly, leaving a long tail of low frequency items. Zipfian
distributions are not limited to word frequencies, but are also encountered
in completely unrelated phenomena such as city populations, incomes (in
economics, a variant of Zipf’s law is known as Pareto’s law), frequency of
citations of scientific papers and visits to web-sites. It should be clear that
these are all distributions of the few-giants/many-dwarves type. For a short
survey of attested Zipfian distributions, see Li (2002).

Mathematically, Zipf’s law has the convenient property that, if we take
the logarithm of both sides, we obtain a linear function (recall that the log-
arithm of a fraction equals the difference of the logarithms of its numerator
and denominator, and that logz* equals klog z):

log f(w) =log C — alogr(w) (2)

This is the equation of a straight line with intercept log C' and slope
—a. Thus, Zipf’s law predicts that rank/frequency profiles will appear as
straight lines in double logarithmic space (i.e., plotting log frequency as
a function of log rank). The values of the intercept and the slope (and
thus of Zipf’s law’s parameters C' and a) can be easily estimated using the
standard method of least squares, implemented in most statistical packages
(see, e.g., Dalgaard 2002 for the R implementation). Figure 7 presents some
of the rank/frequency profiles we already saw plotted in double logarithmic
space. As it can be seen, fitting a straight line to the log-log curves is not
unreasonable (indeed, Zipf probably came up with his formula by looking
at plots of this sort), although the fit is far from perfect, especially at the
edges.

At the right edge of the curves, among the highest ranks (lowest fre-
quencies), we notice a “bell-bottom” pattern due to the increasingly wider
horizontal lines corresponding to the rare words that are assigned different
ranks but have the same frequency. This is expected, since we are fitting
a model predicting no ties (but many words with very near continuous fre-
quencies) to an empirical curve that for high ranks is essentially a discrete
step function. More worryingly, for the two largest corpora (BNC and la
Repubblica) we observe a curvature suggesting that frequency is dropping
more rapidly than what is predicted by Zipf’s law. This tendency is al-
ready noticeable, to a lesser extent, in the Brown and Japanese web corpus
curves. Zipf and other early scholars had no access to large corpora where
the phenomenon is clear (we do not observe this curvature in The War of the
Worlds). The BNC and la Repubblica plots suggest that we should perhaps

12
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be fitting two straight lines to the data: one for the top ranks and one, with
a steeper slope, for the bottom ranks. Indeed, Ha/Stewart/Hanna/et al.
(2006) obtain a good fit to a large English corpus with two lines, one for the
top 5000 ranks and another (with a slope twice as steep) for the remaining
ranks, and present similar results for other languages.

At the other end of the plot (low ranks, high frequencies) we observe,
again, a downward curvature of the empirical profile, i.e., the attested high
frequencies tend to be lower than what would be predicted by their rank
according to Zipf’s law. The pattern was observed early on, and Mandel-
brot (1953) added a parameter to Zipf’s law to take care of this downward
curvature:

C
(r(w) + ) ®)

Zipt’s original law is a special case of Zipf-Mandelbrot’s law with b = 0.
A reasonably small value of b will lower the frequency of the first few ranks in
a significant manner but it will hardly affect higher ranks. For example, if we
assume like above that C' = 60,000 and a¢ = 1, and furthermore that b = 1,
then for the most frequent word Zipf’s law (equation 1) predicts a frequency
of 60,000/1 = 60,000 whereas the Zipf-Mandelbrot’s formula (equation 3)
predicts half this frequency: 60,000/(1 4+ 1) = 30,000. On the other hand,
for the word with rank 1000 the difference in predicted frequency between
the two formulas is minimal (60,000/1,000 = 60 with Zipf’s formula, and
60,000/1,001 = 59.94 with Mandelbrot’s variant). Mandelbrot’s formula no
longer corresponds to a straight line in double logarithmic space:

flw) =

log f(w) =log C — alog(r(w) — b) (4)

This makes sense empirically since we just saw that the log rank/log
frequency profiles are not quite straight lines, but it complicates the math
since we can no longer use a simple least squares linear fit model as with
Zipf’s original equation. In my experience, reasonable fits can be obtained
by first setting b to 0 and calculating log C' and a with the least squares
method, and then increasing b in small steps until the goodness of fit of
equation (4) applied to the first few ranks (those that will be considerably
below the predicted straight line) stops improving. Figure 7 presents Zipf
and Zipf-Mandelbrot fits to the empirical frequency rank profiles (as dashed
and continuous lines, respectively). The Zipf parameters were found with
the least squares method applied to the first 10,000 ranks. The extra Zipf-
Mandelbrot parameter b was calculated with the method I just described,
applied to the top 20 ranks (top 2 ranks in the Japanese corpus). As ex-
pected, in all plots the difference between the Zipf and Zipf-Mandelbrot
curves is noticeable only for the lowest ranks (top left).
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Figure 8: Frequency spectra in log-log space (left panels) and first 40 classes
of the frequency spectrum (right panels) in the Brown (top row) and written
BNC (bottom row), with Zipfian fits based on equation (5).

The a parameter is close to 1 for all the word frequency curves, ranging
from 1.04 (la Repubblica) to 1.09 (BNC and Japanese web corpus). The
tendency of a to be close to 1 is well known, and it justifies the simplified
version of Zipf’s law sometimes found in the literature, in which the formula
is reduced to f = C/r, by assuming a = 1.

In the Brown bigram rank/frequency profile, the estimated a value is
0.76, well below the values typical of single word curves. Also, the plot sug-
gests that for bigrams there is no need for the extra parameter b. The bigram
frequencies look most decidedly like a straight line, without clear signs of
downward curvatures at the top or bottom. Zipf’s law may provide a better
fit to ngram distributions than to single words (Ha/Sicilia-Garcia/Ming/et
al. 2002).

3.1 Zipf’s law for frequency spectra

Zipf (1965, p. 40 and ff.) also analyzed the frequency spectrum in terms of
a power law of the form:

- )

Again, the parameters can be estimated with a simple linear least squares
fit in double logarithmic space. Figure 8 shows that Zipf’s power law for

V()
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frequency spectra provides reasonable fits to the Brown and BNC corpora
(parameters estimated with the least squares method using the top 50 fre-
quency classes).

Observing how Zipf(-Mandelbrot)’s law for rank/frequency profiles fits
high frequency words better and how the frequency spectrum law fits low
frequency words better, Naranan/Balasubrahmanyan (1998) propose to use
(a variation of) the former to model function words and (a variation of) the
latter to model content words.

3.2 Explanations of Zipf’s law

Language after language, we find that Zipf(-Mandelbrot)’s law fits the data
reasonably well. This has prompted many scholars to seek an explanation
for this pattern. Zipf famously proposed to interpret it in terms of a “least
effort” principle: the tension between the goal of the speaker to minimize
production efforts by using only few words very frequently and the goal of
the listener to minimize perceptual confusion by having a large vocabulary
of distinct words would lead to the compromise distribution predicted by
Zipf’s law, with few high frequency types and many low frequency types.
Mandelbrot derived his version of the law from information-theoretic no-
tions, as the optimal solution to the problem of minimizing the average cost
per unit of information in a text. Taking a different approach, other schol-
ars (most famously, Simon 1955), observing how widespread Zipf’s law is
across phenomena that are clearly not related (such as word frequency dis-
tributions, city sizes and income distributions), studied under which general
conditions such a distribution might arise.

Interestingly, texts constructed by generating characters (including white
space) in random order also exhibit a Zipfian distribution (Miller 1957; Li
1992). Intuitively, when combining characters randomly, short words will
be few but much more likely to occur by chance, whereas long words will
be many but each of them will be extremely unlikely. Thus, in the out-
put of the random generation process we will observe the by-now-familiar
few-giants/many-dwarves pattern. Some authors (e.g., Miller 1957) take the
fact that random text has a Zipfian distribution as evidence against “deep”
explanations of Zipf’s law in terms of principles of language or communica-
tion. However, unlike in random text generation, the frequency with which
a speaker selects a word will not depend on the length of the characters
that compose it (the effect, as already observed by Zipf, is likely to go in
the other direction, with a tendency for more frequently used words to be
shortened). Thus, the random text experiments are not “explaining” Zipf’s
law in natural language in any psychologically plausible sense.
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4 Practical consequences

Although most of the literature on word frequency distributions is highly
theoretical, the basic patterns of frequency in corpora have important con-
sequences in practical work. First and most importantly, the Zipfian nature
of word frequency distributions causes data sparseness problems. No mat-
ter how large a corpus is, most of the words occurring in it have very low
frequency and a small set of frequent words constitutes the large majority
of the tokens in the corpus. The distribution of bigrams and linguistic units
larger than the word is even more skewed. Anybody working with corpora
should be aware of these facts.

For example, according to the guidelines in Sinclair (2005), a trained
lexicographer will need to inspect at least 20 instances of an unambiguous
word to get an idea of its behavior. Even in a large corpus such as the
(written) BNC, a lexicographer will find that less than 14% of the words have
a frequency of 20 or higher. In a completely different area, M&bius (2003)
observes that speech synthesis researchers often accept poor modeling of
rare words (and other relevant units) in virtue of the fact that they are rare.
However, Mobius observes that, because of the Zipfian nature of linguistic
data, although each rare unit has a very low probability to occur, the overall
probability that at least one rare unit will occur in a sentence approaches
certainty.

Another facet of the data sparseness problem is that even large corpora
do not sample the whole vocabulary of the language they represent: as
sample increases, the number of types (vocabulary size) keeps increasing.
This is illustrated for the Brown corpus in figure 9, where I plotted the
overall number of types (V) and the number of words occurring once (V(1))
found in the first 100K, 200K, etc. tokens, up to the full corpus size. Even
at full corpus size the vocabulary is still growing.

Brown Vocabulary Growth

vy, v
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a

0

100K 200K 300K 400K SOOK 600K 700K 80DK 900K 1M

Figure 9: The Brown corpus vocabulary growth curve: number of types
(circles) and hapax legomena (triangles) for 10 increasingly larger token
samples (N).

Baayen (2001, pp. 49-50) shows that the growth rate of the vocabulary,
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the rate at which the vocabulary size increases as sample size increases, can
be estimated as follows:

G="1-" (6)

In equation (6), V(1) is the number of words occurring once (hapaz
legomena, Ancient Greek for “said once”) in a sample of size N. The formula
should make intuitive sense: the proportion of hapax legomena that we
encountered up to the Nth token is a reasonable estimate of how likely it
is that word N + 1 will be a hapax legomenon, i.e., a word that we have
not seen before and that will consequently increase vocabulary size. In the
Brown corpus, G = 24375/996883 = .024, indicating that the vocabulary
size is still growing at a relatively fast pace. The vocabulary is still growing
(although at a slower pace) in much larger corpora, such as the written
section of the BNC (G = .003) and the la Repubblica corpus (G = .002).

An important consequence of the fact that even large corpora are not
sampling the full vocabulary of types they are drawn from is that the stan-
dard method of estimating the probability of occurrence of a word (or ngram)
by its relative frequency in a corpus is very inaccurate. On the one hand,
the word types that are not in the corpus are wrongly assigned 0 probability.
On the other hand, the probability of the words that do occur in the corpus
is overestimated, since they take up probability mass that should have been
assigned to unseen words. Indeed, much work in corpus-based computa-
tional linguistics (see, e.g., Manning/Schiitze 1999) focuses on ways to solve
problems deriving from data sparseness, e.g., by assigning some probabil-
ity mass to unseen words/ngrams with heuristic methods, or by clustering
words into classes to obtain more robust statistics, or by using massive data
collections, such as the web.

Another consequence of the fact that V keeps growing with corpus size
is that we cannot use it as a measure of lexical richness when comparing cor-
pora of different sizes: larger corpora will tend, trivially, to have more types.
The fact that V' increases with N (in ways that are not captured by simple
functional relations) also affects nearly all the “constants” that have been
proposed in the literature as measures of lexical richness (Tweedie/Baayen
1998), which turn out to vary with corpus size, and thus are not true con-
stants. Statistical models of word frequency distributions (such as those
introduced in Baayen 2001) provide formulas for the expectation (mean)
and variance of quantities such as vocabulary size at arbitrary sample sizes.
Thus, they allow the comparison of corpora of different sizes (we can com-
pute, e.g., the expected number of types we would see in a smaller corpus X
if we could “stretch” it to the length of a larger corpus Y), and, under cer-
tain assumptions, to assess whether the vocabulary size difference between
the corpora is statistically significant. Word frequencies require specialized
statistical models, since some crucial aspects of standard methods, such as
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the assumption that the central limit theorem guarantees the normality of
sample averages for reasonably large samples, are not appropriate for the ex-
tremely skewed word/ngram frequency data. Lexical-statistical models have
been applied most extensively in stylometry and in the study of morphologi-
cal productivity (see Articles 52 and 43 of this handbook, respectively), but
also in terminology (Kageura 1998) and collocation mining (Evert 2004).
Unfortunately, the experiments reported in Evert/Baroni (2006) indicate
that the prediction quality of current lexical-statistical models is not very
high, probably because typical corpus data severely violate the randomness
assumption that lies at the core of statistical modeling.

The Zipfian distribution of word frequencies is not only “bad news”. The
fact that we can expect words in pretty much any natural language text to
have this distribution (and the coefficient a to be close to 1) has found many
applications, ranging from index compression (Baldi/Frasconi/Smyth 2003,
section 4.1.2) to term weighting in information retrieval (Witten/Moffat/Bell
1999, section 4.4), to cryptography (Landini/Zandbergen 1998), to Bayesian
modeling of morpheme frequencies (Creutz 2003).

5 Conclusion

This article introduced the typical patterns of frequency distribution encoun-
tered in corpora/texts, it proposed Zipf-Mandelbrot’s law as a descriptive
model that captures such patterns and it illustrated some of the conse-
quences of these patterns for corpus-based work. Of course, I only scratched
the surface of the large body of studies on lexical statistics.

The interested reader should proceed to Baayen (2001), a very thorough
(and mathematically challenging) introduction to word frequency distribu-
tions with an emphasis on statistical modeling. I am not aware of contem-
porary introductions to lexical statistics at a less advanced level. Muller
(1977) is an introduction in French to the basic concepts of word frequency
analysis.

The Journal of Quantitative Linguistics and Glottometrics often feature
articles on relevant topics. In 2002, the latter published three special issues
in honor of George Kingsley Zipf. The recent HSK handbook on quantitative
linguistics (Ko6hler/Altmann/Piotrowski 2005) features several articles on
various aspects and applications of lexical statistics.

For those interested in the hands-on approach, the LEXSTATS software
developed by Harald Baayen for the statistical analysis of word frequency
distributions is freely available from his site:

http://www.mpi.nl/world/persons/private/baayen

The free zipfR package developed by Stefan Evert and myself provides
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similar functionalities, and it is integrated in the popular open source sta-
tistical package R. For information, visit the site:

http://purl.org/stefan.evert/zipfr

Finally, Wentian Li maintains a very up-to-date Internet bibliography
on Zipf’s law and related principles at:

http://www.nslij-genetics.org/wli/zipf
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